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Abstract

The effects of social media on critical issues, such as polar-
ization and misinformation, are under scrutiny due to the dis-
ruptive consequences that these phenomena can have on our
societies. Among the algorithms routinely used by social me-
dia platforms, people-recommender systems are of special in-
terest, as they directly contribute to the evolution of the social
network structure, affecting the information and the opinions
users are exposed to. In this paper, we propose a framework
to assess the effect of people recommenders on the evolution
of opinions. Our proposal is based on Monte Carlo simula-
tions combining link recommendation and opinion-dynamics
models. In order to control initial conditions, we define a ran-
dom network model to generate graphs with opinions, with
tunable amounts of modularity and homophily. We join these
elements into a methodology to study the effects of the rec-
ommender system on echo chambers and polarization. We
also show how to use our framework to measure, by means
of simulations, the impact of different intervention strategies.
Our thorough experimentation shows that people recom-
menders can in fact lead to a significant increase in echo
chambers. However, this happens only if there is considerable
initial homophily in the network. Also, we find that if the net-
work already contains echo chambers, the effect of the recom-
mendation algorithm is negligible. Such findings are robust to
two very different opinion dynamics models, a bounded con-
fidence model and an epistemological model.

Introduction
Social media have significantly transformed how the general
public consumes information, to such an extent that many
contemporary political events in the world have been con-
nected to social media usage, from Arab Spring (Khond-
ker 2011) to Donald Trump election (Enli 2017). Due to
their disruptive potentiality, the algorithms adopted by so-
cial media platforms have been, rightfully, under scrutiny:
in fact, such platforms are suspected of contributing to the
polarization of opinions by means of the so-called “echo-
chamber” effect, due to which users tend to interact with
like-minded individuals, reinforcing their own ideological
viewpoint, and thus getting more and more polarized in the
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long run. Among all types of algorithms potentially respon-
sible for strengthening echo chambers, people-recommender
systems (e.g. “People You May Know” in Facebook or “Who
to Follow” in Twitter) are of special interest, as they di-
rectly contribute to the evolution of the social network struc-
ture, thus affecting the information and the opinions a user
is exposed to. People recommenders mainly take advantage
of two types of information to recommend who to follow:
network structure (e.g., recommending friends of friends)
or content (e.g., recommending users with similar interests)
(Barbieri, Bonchi, and Manco 2014). As such, one might
expect that homophilic links are more likely to be recom-
mended than heterophilic ones, contributing to the forma-
tion of echo chambers. As in a vicious loop, echo chambers
might in turn make homophilic links more likely to be rec-
ommended in the future. To hold algorithm designers and
platforms accountable for the effects of their systems, we
need to develop tools to measure such effects.

Therefore, the main research question we tackle in this
work is the following: how can we assess the effect of people
recommenders on echo chambers and polarization?

We tackle this research question by means of a principled
approach that, by combining an opinion dynamics model
with a given people-recommender algorithm, is able to sim-
ulate the behavior of individuals changing their opinions as
a consequence of their interactions with their neighborhood,
within a social network that is continuously evolving.

Method. For what concerns opinion dynamics, we adopt
two very different and complementary models: the classic
Bounded Confidence Model (Deffuant et al. 2000), and the
epistemological model by Bala and Goyal (1998). The for-
mer assumes opinions are equivalent; interaction happens
by people close enough in their opinions (i.e., within their
bounded confidence interval) getting closer to each other.
The latter assumes that opinions are not equivalent: one of
the antipodes is a factual truth and the other is its negation.
Each agent, while performing observations of the world,
forms an opinion about a statement, that might be true or
false. During interactions, agents exchange the observations
they made and update their opinions accordingly. An exam-
ple of the first model is a typical political debate (e.g., the
Stay-Leave dichotomy during the Brexit campaign), while
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an example of the second model is the tension between a
hoax (e.g., “vaccines cause autism”) and the scientific evi-
dence (e.g., “vaccines do not cause autism”).

As people recommenders, we adopt several state-of-
the-art link predictors (Liben-Nowell and Kleinberg 2007)
which are based on the network structure only, and one rec-
ommender which is biased by the opinions of the agents.

In order to assess the dependence of our results on ini-
tial conditions, we develop a random network model with
opinions, extending the model by Lancichinetti, Fortunato,
and Radicchi (2008). Finally, we develop a series of met-
rics and techniques to examine whether the presence of
echo chambers and polarization in the network increases or
decreases as a consequence of the recommender. Our ap-
proach, dubbed PROD (as it enables to study the effects of
People Recommenders on Opinion Dynamics), can also as-
sess whether such consequences are statistically significant.
Findings. Our main contribution is therefore the definition
of a novel framework to assess the effect of any recommen-
dation algorithm on echo chambers and polarization. We do
not place any assumption on the given recommender, which
is seen as a black-box. The results we can draw from our
thorough experimentation are summarised as follows:

1. People recommenders can strengthen echo chambers, as
long as homophilic links are initially more present than
heterophilic ones.

2. This effect becomes negligible (or even reversed) if the
network is already segregated in polarized communities.

3. The above findings are consistent between different opin-
ion dynamics models and recommender algorithms.

4. However, differences between recommenders can be ob-
served: some recommenders dramatically contribute to
polarization, while others do so only slightly and only un-
der certain assumptions.

Summing up, we show that people recommenders can
amplify the intrinsic homophilic bias in a social network,
contributing to the creation of echo chambers, where each
node is surrounded by like-minded neighbors. Finally, we
also showcase the usage of our framework to simulate the
effects of three different intervention policies, aimed at mit-
igating echo-chambers and polarization effects. Our results
show that a mitigation strategy which tries to recommend
users to users with different opinions, might be effective in
reducing the appearance of echo-chambers and polarization.

Related Work
Despite the increasing attention received by the research
community, the role played by social media in opinion for-
mation remains an important open question. Many stud-
ies suggest that social media users tend to access informa-
tion from a narrow spectrum of opinions, forming “social
bubbles” of homogenous individuals (Nikolov et al. 2015;
Pariser 2011), possibly as a consequence of algorithmic
filtering. In this perspective, since users within homoge-
nous bubbles tend to produce and consume more informa-
tion that confirms their preconceptions, social media might

turn into echo chambers (Quattrociocchi, Scala, and Sun-
stein 2016), reinforcing their beliefs. However, this view is
far from unanimous. Some researchers consider that ideo-
logical segregation in social-media usage has been overes-
timated (Barberá et al. 2015; Garrett 2009). Bakshy, Mess-
ing, and Adamic (2015), through an empirical analysis of
Facebook data, suggests that algorithmic ranking produces,
in fact, more exposition to diverse viewpoints. Fletcher and
Kleis Nielsen (2017) confirm, through surveys, that casual
social media users get exposed to more points of view than
similar people who do not use social media at all. Morales,
Monti, and Starnini (2021) show that in the Reddit polit-
ical community, users of opposite leaning are more likely
to interact than users with similar leaning; also, they show
that geographical echo chambers might actually play a larger
role. Others have noted that echo chambers observed online
could be, in fact, originating offline (Bastos, Mercea, and
Baronchelli 2018), thus motivating the need to consider dif-
ferent possible pre-existing levels of homophily when study-
ing the relationship between algorithms and polarization. Fi-
nally, Cinelli et al. (2021) found evidence of echo chambers
on Facebook, but not on Reddit, showing that there exist dif-
ferences between different social media platforms that might
depend on different content recommendation mechanisms.

Our contribution in this debate lies in a principled ap-
proach to assess, through simulations, the effects of people-
recommender algorithms on opinion dynamics.

Few recent studies address similar research questions.
Sı̂rbu et al. (2019) show that algorithmic bias can slow down
the convergence of an opinion dynamics model, and con-
tribute to fragmentation, but they do not study the effect of
people recommenders.

Perra and Rocha (2019) study the effect of different in-
formation filtering policies by designing a novel opinion dy-
namics model; they find a strong effect when the information
received by a user is biased towards their opinion, and that
some network configurations can reinforce such effect.

Fabbri et al. (2020) study the effects of people recom-
mender systems on the visibility of users in a network
divided in two subgroups (e.g., males and females, or
democrats and republicans), and with different levels of ini-
tial homophily. They show that homophily plays a key role
in the visibility given to different groups: when the minor-
ity is homophilic, there is a disparate visibility in favor of
the minority class; when the minority is not homophilic, the
dis-parate visibility is in favor of the majority class.

Sasahara et al. (2021) focus on user-driven rather than
platform-induced behavior, showing that a small bias can
lead to a segregated social network.

Finally, de Arruda et al. (2021) recently proposed a novel
opinion dynamics model that incorporates the interaction
with an idealized recommender. They found that the rise of
echo chambers crucially depends on the role of the social
network platform, expressed as a probability distribution of
content being seen by others. In this work, instead, we focus
on existing recommender algorithms, and study their effects
on well-known opinion dynamics models, through their in-
teractions with the network structure.

91



Framework
Input. PROD takes as main input a directed social graph
G = (V,E,O) where an arc (u, v) ∈ E indicates that u
follows v, while O : V → [0, 1] is a function assigning
to each node in the network an opinion. The other main in-
put is a link recommender, that we can think as a function
`G : V → V × [0, 1]. Given a node u ∈ V , the function
assigns a recommended node v ∈ V such that (u, v) /∈ E
and a probability pv ∈ [0, 1]. Such probability represents the
strength of the recommendation given to u to start follow-
ing v or, alternatively, the probability that u will accept the
recommendation and start following v, thus adding the new
link (u, v) to E.

On top of these two main ingredients—a graph with opin-
ions, and a recommender—PROD adds a given opinion dy-
namics model (ODM). ODMs are expressed with an update
rule, which modifies the opinions of two nodes that interact.
Framework overview. Given this input, PROD operates ac-
cording to the pseudocode in Algorithm 1.

For a number of time steps Tmax, nodes are visited se-
quentially in random order (lines 3-5). At each time step,
every node interacts with S other nodes, according to the
update rule of the opinion dynamics model. There are two
ways interactions can happen: through newly created links
(lines 10-19) or through pre-existing links (lines 20-23). In
the former case, the ODM and the link recommender work
jointly, while the latter case is a typical step of an ODM.

More in detail. In the first case, the recommender algo-
rithm is asked for a node v to recommend to u (line 10).
Together with the node v, the algorithm will also return the
score pv ∈ [0, 1]—the probability of the recommendation
being accepted. If the recommendation (u, v) is accepted,
the interaction happens (according to the ODM), and the
new link is added to the network. After doing this, we per-
form a rewiring, in order to model the well-known concept
of attention budget: since time and attention are limited re-
sources, users interact with a small set of neighbors (Golder,
Wilkinson, and Huberman 2007; Huberman, Romero, and
Wu 2008), even if nominally they declare a larger number of
friends on social media. To keep this fact in consideration,
whenever u starts to follow another node v, we remove one
of its old neighbors at random. This mechanism will also
keep the overall density of the network stable, letting us at-
tribute any observed effect to the recommender algorithm
itself, rather than to a densification of the graph.

When a given number of total recommendations Rmax

is reached, the recommender stops and lets the ODM work
alone, to let emerge any long-term effect of the final graph
on the opinion distribution. We calibrate the internal param-
eter α such that these two regimes (the one with link recom-
mender and ODM cooperating and the one purely ODM-
based) last approximately Tmax

2 time steps each, to keep
the simulations for different recommenders with the same
amount of recommendations Rmax and the same number in-
teractions between nodes (S · |V | · Tmax).

In the rest of this section, we are going to discuss the two
main ingredients of PROD: the opinion dynamics model
and the people-recommender algorithm.

Algorithm 1: PROD
Input: Graph with opinions G = (V,E,O),

people recommender `G : V → V × [0, 1],
Parameters: interactions per time step S ∈ N+.

number of recommendations Rmax ∈ N,
number of time steps Tmax ∈ N+.

1 r, t← 0

2 α← Rmax/(
Tmax

2 · S · |V |)
3 while t < Tmax do
4 t++
5 σ ← random permutation of V
6 forall u ∈ σ do
7 s← 0
8 while s < S do
9 if Bernoulli(α) then

10 v, pv ← `G(u)
11 if Bernoulli(pv) then
12 w ← random node from Nout(u)
13 E ← E \ {u,w}
14 E ← E ∪ {u, v}
15 UpdateRule(Ou, Ov)
16 s++
17 r++
18 if r = Rmax then
19 α← 0

20 else
21 v ← random node from Nout(u)
22 UpdateRule(Ou, Ov)
23 s++

Opinion Dynamics Models
We consider two complementary models: the classic
Bounded Confidence Model (Deffuant et al. 2000), and the
epistemological model by Bala and Goyal (1998). As al-
ready discussed in Section these two models are very dif-
ferent and complementary. We next see them in details.
Bounded Confidence Model (BCM). In BCM, interactions
modify the opinions of the nodes only when they are within
a confidence interval ε ∈ [0, 1] from each other. If they are,
when u interacts with v, u moves closer to v’s opinion. The
strength of the interaction is represented by convergence pa-
rameter µ ∈ [0, 0.5]. The update rule of BCM is therefore
defined by:

onewu =

{
ou + µ · (ov − ou) if |ou − ov| < ε

ou otherwise

Epistemological model. This model describes how a net-
work of agents would form an opinion about a statement,
that might be true or false. Consider for example a group of
clinicians which use a drug X with a constant and known
probability of success (psucc = 0.5). Suppose that a new
drug Y, with an unknown probability of success, is intro-
duced. Each clinician tries the new drug in some experi-
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ments, shares the results with his network, and then updates
his belief on the new drug using all the data acquired.

As in the model introduced by Bala and Goyal (1998),
we consider: (i) two Bernoulli random variables {x0, x1},
which represent the actions of the agents (e.g. using the
known drug or experimenting with the new one); (ii) a “true”
state of the world θ, that defines their probability of success
θ = [psucc(x0) = 0.5, psucc(x1) = 0.5 + ε]. The parameter
ε ∈ (0, 0.5] represents the gain of x1 over x0 in expectation,
but it is completely unknown to the agents; in fact, agents
need to form an opinion on whether ε > 0 is true, or not.

Each agent, in fact, has a (normalized) belief o(θ) on the
state of the world θ, which drives their next action. Two pos-
sible outcomes can arise: (i) the agent hypothesizes that ε
is negative (i.e. the probability of success of the new drug
is less than the previous), and they performs action x0 for
n times, giving a fixed outcome of n

2 ; (ii) their hypothesis
is that ε > 0, which implies that psucc(x1) > psucc(x0)
and therefore they perform action x1. In this case, the out-
come of the n experiments is a Binomial distribution with
psucc(x1) = 0.5 + ε.

Finally, when agent u interacts with v over the arc (u, v),
they update their beliefs by considering the experiments
performed by v (if any), according to a Bayesian learning
model:

o(θ)newu =
1

1 +
1− o(θ)
o(θ)

(
0.5− ε
0.5 + ε

)2kv−n (1)

where kv is the number of successes obtained by v in their
n experiments.

People-Recommender Algorithms
People recommenders are key services in social media and
social networking platforms. Although early people recom-
menders were essentially performing link prediction using
only the graph structure as input information (Liben-Nowell
and Kleinberg 2007), modern algorithms often combine dif-
ferent sources of information through learning techniques:
see (Guy 2018) for a recent survey. However, for sake of
simplicity, we can consider two main types of information
as input to the people recommenders: the network struc-
ture (e.g., recommending friends of friends), content, activ-
ity and behavioural information (e.g., recommending users
with similar interests).

Given that in our model we only have the graph structure
and user opinions, we consider three scalable state-of-the-
art link prediction methods that only use the network struc-
ture —Jaccard Index, Personalized PageRank (Kumar et al.
2020), and SALSA (Gupta et al. 2013; Guy 2018)— and a
method which relies on users opinions. All the methods we
consider (presented in details next) accept as input a directed
social graph.
Directed Jaccard index (DJI). Let us indicate with N+(u)
the out-neighbors set for the node u, and with N−(u) its
in-neighbors set, on the given directed graph G = (V,E).

Then, we define their Directed Jaccard Index as

DJI(u, v) =
|N+(u) ∩N−(u)|

|N+(u)|+ |N−(v)| − |N+(u) ∩N−(u)|

Personalized PageRank (PPR). Given the adjacency ma-
trix A associated to a directed graph G = (V,E), where
each entry aij = 1 iff (i, j) ∈ E, and its column-stochastic
version A′ (i.e. each entry is the probability to transition
from i to j), the global PageRank vector p is the solution
of a linear system (Page et al. 1999; Gleich 2015) and satis-
fies

p = d ·A′p + (1− d) · r (2)
where d is called damping factor and 1− d is the teleporta-
tion probability, representing the probability that a random
walker transits randomly to another node extracted with uni-
form distribution r defined over V . Setting r = 1u, where
1u is a |V |-dimensional vector with 1 at the uth entry, re-
duces the solution of Eq. 2 to the Personalized PageRank
(PPR) for node u.
SALSA. In (Gupta et al. 2013), the Who To Follow service
technology architecture implemented by Twitter is depicted
along with the algorithm used for the recommendations. The
proposed model makes use of SALSA algorithm proposed by
Lempel and Moran (2001). SALSA is a link-analysis algo-
rithm, of the same family of the well-known HITS (Klein-
berg 1999). The algorithm used in our work follows the
schema described by the same authors of (Gupta et al. 2013)
in a subsequent paper (Goel et al. 2015), using a score-
propagation strategy. Given a user u ∈ V , SALSA builds
a bipartite graph Gb = (Vh, Va, Eb), where Vh is the set of
hubs, i.e. the nodes with top-k value of Personalized PageR-
ank on node u, and Va is the set of authorities, i.e. the nodes
the hubs follows in the original graph G. Each directed edge
(i, j) ∈ E becomes a directed edge (ih, ja) ∈ Eb. Let M
be the matrix with dimension (|Va|, |Vh|), where Mij = 1
iff (jh, ia) ∈ Eb, zero otherwise. Let M ′ be the matrix M
with each non-zero column divided by the sum of the col-
umn. Let MT be the transpose of the matrix M with each
non-zero row divided by the sum of the row. Let d be the
damping column vector with di = d̂ if i = u and zero oth-
erwise. Two equations are defined as follows:

r = M ′s (3)

s = d+ (1− d̂) ·MT r (4)
r and s are two vectors of size |Va| and |Vh| which represent
the relevance scores of authorities and similarity scores of
hubs. The procedure initializes s with si = 1 iff i = u and
zero otherwise. Equations 3 and 4 are then recursively ap-
plied until the values converge. The list of recommendations
is the set of authorities Va sorted by the values in r.
Opinion-biased algorithm (OBA). Besides these network-
based classic recommenders, we also consider an idealized
algorithm that recommends links by matching nodes with
a similar opinion. Considering an opinion vector o, the
opinion distance between u and v is simply the difference
duv = |ou − ov|. Therefore, as in (Sı̂rbu et al. 2019), we
define their opinion-biased recommendation score as

puv =
d−γuv∑

(u,v)∈E d
−γ
uv

where γ tunes the importance of similarity: as γ increases,
the recommendation between similar nodes is more likely.
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Normalization of recommenders. Finally, an important is-
sue is how to make the effect of the recommenders compara-
ble. As stated before, each recommender’s procedure derives
different recommendation scores, expressing the strengths
of their recommendations. Indeed, every recommendation
algorithm generates a different list of ranked links for each
node. Even if their scores are bounded, the scale and distri-
bution of these scores may intrinsically depend on the nature
of the recommender and its similarity index.

To ensure that all results are comparable among the differ-
ent models, we implement a quantile transformation of the
recommendation probabilities’ distribution, which allows us
to keep the monotonicity of the ranking scores and scale the
distribution to a uniform one. Specifically, we use a prob-
ability integral transform: given a random variable X dis-
tributed according to the cumulative distribution function
FX (CDF), then we define Y = FX(X), thus having a uni-
form distribution. In practice, to empirically estimate FX for
a given recommender, we draw a large sample of recommen-
dation scores at the beginning of the simulation. Then, each
time a recommender is used in the process, the probability
of recommendation is transformed accordingly.

Evaluation Method
In this section, we are going to discuss how to use PROD
in order to evaluate the effect of a given recommender al-
gorithm on echo chambers and polarization. The proposed
evaluation methodology consists of the following steps:

1. Consider a grid of parameters µ, η, representing networks
with different modularity and initial homophily (see de-
tails in Subsection Random Network Model).

2. For each pair of parameters µ, η generate a sequence Gµ,η
of K random graphs with opinions.

3. On each graph G ∈ Gµ,η , run PROD (Algorithm 1) with-
out any recommender algorithm (i.e., with Rmax = 0),
obtaining a network G′0.

4. Then, on each graph G ∈ Gµ,η , run PROD with the stud-
ied recommender algorithm `, obtaining G′`.

5. Considering a metric m for echo chambers or
polarization (see Subsection Metrics), compute
m(G),m(G′0),m(G′`).

6. Assess the average difference ∆m between the two cases.
Since the initial measurem(G) is the same with and with-
out recommender, we obtain

∆m =
1

K

∑
G∈Gµ,η

m(G′`)−m(G′0). (5)

7. Perform a Kolmogorov-Smirnov test comparing the dis-
tribution of differences in the two cases, determining
whether the observed effect is statistically significant.

In the remainder of this section we are going to discuss
the random network model we designed, which extends the
model by Lancichinetti, Fortunato, and Radicchi (2008) with
opinions. Then, we are going to discuss the two metrics we
use: the neighbor correlation index (NCI), and the random
walk controversy score (RWC) (Garimella et al. 2018).

Random Network Model
In order to study the effect of people recommenders in all
possible configurations of homophily, we need a random
network model with different characteristics. First, it needs
to have a tunable degree of echo chamber structure. Second,
it has to define opinions as well, coherently with the network
structure. Finally, it has to be realistic in its basic features
with respect to real social networks. For these reasons, we
extended the LFR model proposed by Lancichinetti, Fortu-
nato, and Radicchi (2008). This model allows creating net-
works with a realistic degree distribution, following a power-
law, and where each node belongs to a community. In the
original work, the authors show the realistic properties of
this model. Moreover, its community structure lets us easily
define the opinions of each node.

The general assumption is that each node might follow the
opinion of their community or might develop an opinion in-
dependently from their neighbors. In this way, we decouple
and distinguish two main components of the echo-chamber
structure of the network: its (initial) homophily, describing
how close on average is a node opinion from the opinions
of their local community; and its modularity, that describes
how segregated are the different communities. The former
is introduced by our opinion-aware extension of the original
model, while the latter is a parameter of the LFR model. We
indicate these parameters η and µ, respectively.

The procedure takes as input three parameters: the num-
ber of nodes in the graph N , the modularity µ and the initial
homophily η, while the output consists of a directed graph
G and opinions O ∈ [0, 1]N of the nodes. The modularity
parameter of the original model µ tunes the ratio of intra-
community edges; increasing this value makes the network
more split in communities. From the original model, we ob-
tain a set of edges E and a partition of nodes into commu-
nities c : V → C. We note that in the LFR model the sizes
of communities are realistic and follow a power-law distri-
bution. To generate opinions, we first pick an opinion for
each community k ∈ C by drawing ok ∼ U(0, 1). Then, the
opinion of a node v is decided by a Bernoulli trial with prob-
ability η. If the outcome is successful, the node assumes the
opinion of its community, i.e. ov = oc(v); otherwise, it draws
a individual opinion ov ∼ U(0, 1). Hence, higher values of
η increase the probability that a node shares the opinion of
the other nodes belonging to the same community.

With this procedure, we can generate random networks
with opinions, by controlling both their initial homophily η
and their modularity µ. A network with high values for both
will have a very polarized structure. Instead, for instance,
low values for η and high values for µ will lead to graphs
with well-separated communities, but plenty of variance in-
side each. We show an example network for each of the four
corner cases in Figure 1.

Metrics
In order to measure the effect of the recommender systems
in terms of echo chambers and polarization phenomena, we
employ two global metrics defined over a graph where each
node is labeled with an opinion. The first one, that we in-
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Figure 1: Examples of graphs and opinions obtained with the
random network model in four corner cases of the parame-
ter space (homophily η on the x-axis, modularity µ on the
y-axis). Colors correspond to the opinion of each node; the
size is proportional to the degree of each node. Each commu-
nity produced by the model has an assigned position in the
axis derived from the Fruchterman-Reingold force-directed
algorithm (Kobourov 2012). For each node, we draw random
coordinates around the correspondent center of the assigned
community. Here the density is constant in all graphs.

troduce, is Neighbor Correlation Index (NCI), which mea-
sures the similarity between each node and its neighbors,
thus quantifying the echo-chamber effect. The second one,
borrowed from the literature, is the Random Walk Contro-
versy score (RWC), which measures the polarization of the
network, in terms of random walks.
Neighbors Correlation Index (NCI). We define NCI as the
Pearson correlation ρ(o,oNu ) between the opinion vector o,
and the average opinion of each node’s neighbors, that is

oNu =
1

N(u)

∑
v∈N(u)

ov.

Therefore, NCI is bounded between [−1, 1]. The value −1
represents perfect anticorrelation: each node has exactly the
opposite opinion of its neighbors. Instead, 1 represents per-
fect correlation: each node has exactly the same opinion of
all the nodes they follow—i.e., they are embedded in perfect
echo chambers.
Random Walk Controversy score (RWC). In order to
measure polarization, we employ the Random Walk Contro-
versy score as defined by Garimella et al. (2018). This mea-
sure accounts for the probability that a random user could

be exposed to authoritative content from the opposite side.
Given two disjoint components of the graph X and Y , the
Random Walk Controversy score is

RWC = PXXPY Y − PXY PY X
where Pij is the probability for a random walker that ends in
partition j to have started in partition i. In our case, we de-
fine X (resp. Y ) as the set of nodes v with opinion ov < 0.5
(resp. ov > 0.5). This measure is not influenced by the size
of the components and the total degree of the nodes in the
two partitions, and it is bounded between −1 and 1. High
values correspond to a low probability of crossing the parti-
tions w.r.t. staying in the same partition: therefore, it means
that the two sides are very well separated, and thus that the
network is polarized. Oppositely, values around 0 in this
metric reflect an equal probability to cross sides and to stay
in the same one. In practice, we follow the suggested im-
plementation (Garimella et al. 2018) and use random walk
with restart, forcing a restart when the random walk reaches
a high-degree node (specifically, over the 95th percentile of
the degree distribution).

An important distinction between the two metrics is that
since RWC is based on random walks, this metric incorpo-
rates similarities between distant nodes. Instead, NCI cap-
tures local dynamics, by measuring how much each node’s
opinion is echoed by its immediate neighbors.

Results
In this section, we present the results we obtain by applying
PROD using the ODMs of Subsection Opinion Dynamics
Models and the people recommenders of Subsection People-
Recommender Algorithms. To foster reproducibility, we
publicly release all the code of our experiments at https:
//github.com/FedericoCinus/PROD-ICWSM2022.

In the experiments presented next, the parameters are
fixed as follows. We generate networks with 400 nodes and
∼5500 edges. In order to avoid disconnected graphs, we set
Rmax by increasing it in small steps and taking the last value
before the graph results disconnected after running PROD.
In this way, we obtain Rmax = 0.4 · |E|. However, our re-
sults are qualitatively similar with different values of the ra-
tio Rmax/|E|. The parameter Tmax is set to 5000 for BCM
and 100 for the epistemological model. The number of inter-
actions S is set to 2 in order to allow for mixed interactions
(both existing edges and recommended ones) at each iter-
ation. For BCM, the internal parameters µ and ε are set to
0.2. For the epistemological model, the parameters ε and n
are set to 0.005 and 15. With this choice of parameters, we
run the procedure outlined in Section Evaluation Method,
running K = 500 simulations with each of the given rec-
ommenders. We repeat this process varying the parameters
of the random network model, in order to estimate the ef-
fect of the recommender over a range of graphs with differ-
ent initial modularity and homophily; specifically, we test
η ∈ [0.2, 0.8] and µ ∈ [0.05, 0.95].

We present both models’ results for the NCI metric in Fig-
ure 2 and for the RWC metric in Figure 3. In each of these
figures, the x-axis corresponds to the initial homophily η,
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Figure 2: ∆NCI for the epistemological model (left half) and for the BCM model (right half). Each heatmap represents a given
recommender and colors represent ∆NCI under different initial conditions (homophily η on x-axis, modularity µ on y-axis).
Numbers are shown when the difference is statistically significant (p < 0.001).

while the y-axis to the initial modularity µ of the network.
Therefore, each region of the map corresponds to a certain
region of the space of possible initial conditions of the net-
work; examples of these initial conditions are shown in Fig-
ure 1. Since the color represents the difference in our metric
between a scenario with a recommender and one without
(Equation 5), areas with a more intense shade of red indi-
cate an increase in echo chambers (for NCI) or polarization
(for RWC) when a recommender system is used. In each
plot, we mark an entry with a number only if it is signif-
icant (p < 0.001) according to the Kolmogorov-Smirnov
test. Therefore, each of these plots is a fingerprint of one rec-
ommender system, when considering a specific metric and
opinion dynamics model.

In the following, we will analyze first the results we ob-
tained regarding echo-chamber behavior using NCI (Subsec-
tion Findings on Echo Chambers), and then regarding polar-
ization using RWC (Subsection Findings on Polarization).
Then, we explore how our results can change under different
assumptions, such as different rewiring rules or susceptibil-
ity to recommendations (Section Generalizability). Finally,
we show how our framework can be used to assess the im-
pact of intervention policies on recommender systems (Sub-
section Intervention Policies).

Findings on Echo Chambers
Let us now focus on the effect of recommenders on echo
chambers, as measured by the NCI metric, by looking at Fig-
ure 2. Firstly, we find that all the recommenders significantly
increase echo chambers for some initial conditions. In par-

ticular, we always observe an increase when the following
two conditions are met:

(i) Homophilic links—i.e., links connecting nodes with the
same opinion—are at least half of the initial links of the
network (i.e., η > 0.5).

(ii) The initial network is not already segregated in polar-
ized communities, but there are a large fraction of inter-
community links (i.e., µ < 0.3).

For this type of network (highly homophilic, but not well
modularized) the effect of people recommenders is always to
increase echo chambers, w.r.t. a scenario where no algorithm
was introduced. This finding is consistent across all recom-
menders and opinion dynamics models. It is interesting to
note, however, that for Personalized PageRank this effect
is slightly more intense when the damping factor is lower.
This finding is expected since a lower damping factor corre-
sponds to recommendations being more personalized, while
a higher damping factor prioritizes nodes that are central for
the whole network. Therefore, the more recommendations
are personalized, the more we find that they can contribute
to the rise of echo chambers.

Instead, we observe a different effect in other regions of
the initial conditions space. When the initial graph is not ho-
mophilic (i.e., η < 0.5), the effect of the recommender is
in general very small, and possibly even in the opposite di-
rection w.r.t. the null model with no recommender. In other
words, the effect of recommenders on homophily is to am-
plify the initial bias present in the network.

A similar—but stronger—pattern can be noticed when
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Figure 3: ∆RWC for the epistemological model (left half) and for the BCM model (right half). Each heatmap represents a given
recommender and colors represent ∆NCI and ∆RWC under different initial conditions (homophily η on x-axis, modularity µ
on y-axis). Numbers are shown when the difference is statistically significant (p < 0.001).

the network is highly modularized. Here, we also ob-
serve some differences between different recommenders. If
enough inter-community links are present in the initial net-
work (µ > 0.5), then the effect of DJI is mostly non-
significant. Instead, for PPR and SALSA, we observe a large
reduction in the echo-chamber effect when such algorithms
are used. In other words, if the network is not very segre-
gated, recommenders increase homophily and echo cham-
bers; but, if the network is already very divided into com-
munities, some recommenders might have the opposite ef-
fect, and “shuffle together” different communities. The al-
gorithms where we observe this effect are those that are able
to recommend distant nodes.

Finally, we highlight that these effects hold even for
the opinion-biased recommender; however, for this recom-
mender, the overall effect is always of increasing the echo
chamber in the network. This result confirms that such an
idealized recommender is useful as a benchmark, showing
what happens when recommendations are a result of opin-
ions only, without considering the network structure.

We further investigate our findings in Figure 4, by observ-
ing a concrete example with two simulated graphs. Here we
highlight which nodes are part of an echo chamber, by set-
ting their transparency as proportional to their contribution
in the NCI metric—i.e., how correlated are their opinions
to the opinions of their neighbors. We observe that in high
homophily and low modularity setting, echo chambers visi-
bly emerge when a recommender is considered, while they
do not in the null model without a recommender. Instead,
when the network is already polarized (i.e., with high initial

modularity), the effects of recommenders are negligible.

Findings on Polarization
Now, we turn our attention to the effect of recommenders on
polarization, as measured by the RWC metric, by looking
at Figure 3. First of all, in this case, results are very differ-
ent between Jaccard Index and random walk-based recom-
menders, Personalized PageRank and SALSA, for all ini-
tial conditions. In the general case, in fact, while the for-
mer type of recommenders obtains a small negative effect
on polarization w.r.t. the null model, the latter is increas-
ing it significantly. We hypothesize that this difference is
caused by the information that these two types of recom-
menders are considering. Since random walk-based recom-
menders consider higher distances when making recommen-
dations, they prioritize candidates within one’s own com-
munity, even when such a community is larger than a one-
hop neighborhood. This ends up increasing the separation
between the different communities. Instead, Jaccard Index
keeps in consideration only the immediate neighbors of a
node; this results in avoiding increasing the segregation be-
tween polarized communities in the global structure of the
network. Moreover, since the RWC score is based on how
likely is a random walk to cross different communities, it
sharply highlights this distinction. This metric is, therefore,
useful to distinguish the higher-order effects of the differ-
ent recommenders, providing useful information to evaluate
the long-term consequences of different choices in recom-
mender algorithms.

Finally, we highlight that for PPR and SALSA the in-
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Figure 4: Example of the evolution of networks with two different initial conditions, and three different recommenders. From
left to right: (a) initial graph, (b) final graph with no recommender, (c) Directed Jaccard (d) Personalized PageRank, (e) Opinion-
Biased. Colors represent the opinion of each node; transparency represents the correlation of their opinions with their neighbor-
hood (i.e., echo chambers). Each community produced by the random network model has an assigned position in the axis. For
each node, we draw random coordinates around the correspondent center of the assigned community. In the first row, the initial
configuration is η = 0.8, µ = 0.05 (high homophily, low modularity). By looking at the difference between (b) and (c,d,e), we
observe an increase in echo chamber behavior due to the recommenders. In the second row with η = 0.8, µ = 0.75, instead, we
observe no significant difference.

creasing effect holds in all regions of the initial condi-
tion space, except for already polarized networks (high µ,
high η). In this case, we observe a saturation phenomenon:
the recommender has a smaller effect (for PPR) or even neg-
ative (for SALSA) on polarization w.r.t. the null model. In-
stead, when DJI starts from such a polarized network, it is
the only case when it contributes to further polarization, by
amplifying the initial separation.

As in the previous section, all these effects are consis-
tent across the two opinion dynamics models. Such findings,
therefore, are valid both for the case where opinions are in-
distinguishable and nodes simply influence each other and
for the case where nodes are trying to form an opinion on a
true fact by exchanging observations.

Generalizability
In this section, we want to validate the robustness and gen-
eralizability of our framework by exploring how changes in
the basic assumptions of PROD could impact the results of
our analysis. In particular, we evaluate different procedures
in terms of rewiring edge selection and individual suscepti-
bility on recommendations.

Following the well-known concept of attention bud-
get (Golder, Wilkinson, and Huberman 2007; Huberman,
Romero, and Wu 2008), we postulate that each time a new
connection is created, an existing one is removed. In the re-

sults we presented so far, we followed the most simple possi-
ble choice: select an existing edge with uniform probability,
as done in previous work Sasahara et al. (2021). However,
it is important to assess to which extent this design choice
influences our outcomes. For this reason, we consider two
rewiring policy alternatives: an opinion-based rewiring that
picks the edge to remove with a probability proportional to
the opinion distance between the two nodes; and a degree-
based rewiring, inspired by preferential attachment, where
the edge is selected with probability inversely proportional
to the degree of the node to unfollow. We repeat previous
experiments with each of these two policies. For simplicity,
we limit this analysis to the PPR recommendation algorithm
and to the four extremal configurations of η and µ.

We present results in the leftmost columns of Table 1.
They show quantitatively comparable outcomes between the
standard model, which employs a random uniform rewiring
procedure, and the degree-based policy. Instead, as one
could expect, the rewiring based on the opinion diversity is
disruptive, since it greatly amplifies the polarizing effect. In
other words, all our previous findings seem confirmed when
the user choices are not directly driven by opinion-based
consideration, which of course can explain echo-chamber
effects by itself; however, we have seen how such an as-
sumption is not necessary, since under some configurations
recommender systems alone can produce an increase in echo
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Standard Model Rewiring Susceptibility

Opinion Degree Uniform Power-law
(η, µ) EPI BCM EPI BCM EPI BCM EPI BCM EPI BCM

∆
N

C
I

(.2, .05) -0.04 -0.03 0.38 0.64 -0.06 -0.05 -0.03 -0.03 -0.03 -0.03
(.2, .95) -0.04 -0.02 0.23 0.39 -0.04 -0.03 -0.03 -0.01 -0.03 -0.01
(.8, .05) 0.02 0.08 0.42 0.76 0.03 0.1 0.02 0.09 0.02 0.08
(.8, .95) -0.01 0.00 0.04 0.08 -0.01 0.00 -0.01 0.00 -0.01 0.00

∆
R

W
C

(.2, .05) 0.13 0.13 0.16 0.25 0.16 0.16 0.12 0.12 0.11 0.11
(.2, .95) 0.03 0.02 0.06 0.13 0.03 0.03 0.02 0.02 0.02 0.02
(.8, .05) 0.13 0.13 0.16 0.22 0.17 0.18 0.12 0.13 0.11 0.12
(.8, .95) 0.03 0.02 0.11 0.15 0.02 0.02 0.02 0.02 0.02 0.02

Table 1: Comparison between the standard model and two rewiring procedures (opinion-based and degree-based) and two
users’ susceptibility distributions (uniform and power-law). EPI and BCM represent the two opinion dynamics models. Each
row represents a pair of values of initial homophily η and modularity µ. We report results for each experiment in terms of our
two metrics ∆NCI and ∆RWC. Our standard model relies on a uniform rewiring procedure and constant susceptibility for
all nodes. In bold, we highlight cases that differ from the standard model by more than 0.1.

chambers.
Then, we perform experiments challenging our assump-

tion that all nodes have an equal probability α to accept
the given recommendation, and observe what happens when
each node has an individual susceptibility to recommen-
dations. We test what happens with two different choices
to draw this susceptibility, a uniform distribution where
αu ∼ U(0,m) and a power-law αu ∼ 1−m · x(m−1). In
both cases, we set m in order to satisfy E[αu] = α. We
present these results on the rightmost columns of Table 1.
By comparing these values with the standard model ones,
we find that such a change does not alter significantly our
results in all configurations and recommender algorithms.
Similar and consistent results have been achieved with the
other recommendation algorithms and in all configurations,
thus corroborating the robustness of our findings.

Intervention Policies
Finally, in this section, we explore how to use our framework
to evaluate the impact of intervention policies in the context
of mitigation of echo-chamber and polarization effects. We
defined three intervention procedures working on top of the
recommender system. In particular, given an edge from the
recommender, we replace it, with probability ξ, with another
edge selected according to a probability p; more precisely,
we iterate over possible edges in a random order, and for
each one evaluate a Bernoullian with probability p, until it
is successful. This probability relies on one of the following
strategies.

1. Random uniform strategy: p is uniform over the non ex-
isting edge set. The original recommendation is therefore
modified in order to pursue serendipity.

2. Opinion diversity strategy: p is proportional to the opinion
difference of the nodes, i.e. p = |ou − ov|; here, we try to

bridge individuals belonging to different echo chambers.
3. Degree-based strategy: p is higher for nodes with higher

degrees, according to a sigmoid: p = 1/(1 + e−(x−d̂)),
where x is the in-degree of the recommended node and
d̂ is the average in-degree of the network); the idea is to
leverage popular individuals to break echo chambers, as
suggested by Elmas et al. (2020).
These three strategies have different degrees of real-world

applicability: for instance, a social network user might be
more likely to follow a celebrity (i.e. a high-degree node)
than a random social media user; following a different-
minded individual might be even more unlikely in practice.
However, for the purpose of this work, we are interested only
in analyzing the impact of these idealized policies in mitigat-
ing echo-chamber effects.

We test these three strategies on top of the personalized
PageRank algorithm. Results are presented in Figure 5. They
show that the in-degree strategy and the uniform strategy
have a comparable impact in reducing the echo chamber ef-
fect, with a slightly better effect for the latter. As expected,
the opinion-based strategy results to be more effective be-
cause it directly targets the opinions divergence between the
users, and this effect is more prominent in terms of the corre-
lation metric (NCI). Furthermore, we observe that even low
values of intervention probability are already sufficient for
reversing the effect on both metrics.

Discussion
In this work, we propose a Monte Carlo simulation proce-
dure that combines opinion dynamics modeling and real-
world recommender systems, we quantify the effect of peo-
ple recommenders in social media platforms on the forma-
tion of echo chambers and polarization. We systematically
explore realistic network scenarios, in terms of homophily,
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Figure 5: ∆NCI (first row) and ∆RWC (second row) as a
function of the intervention probability ξ, for each interven-
tion procedure and each model: BCM (left half) and Episte-
mological (right half).

modularity, and power-law degree distribution, by extending
a previously proposed network model (Lancichinetti, Fortu-
nato, and Radicchi 2008) by considering opinions on each
node. Thanks to this model, we are able to perform such
analysis in a wide range of initial conditions, identifying
and exploring two orthogonal dimensions of echo cham-
bers, homophily and modularity. We consider two com-
plementary opinion-dynamics models, the Bounded Confi-
dence Model (Deffuant et al. 2000) and the epistemological
model by Bala and Goyal (1998).

Our findings are robust across the different opinion dy-
namics models and people recommenders tested. We show
that the effect of such algorithms is remarkable w.r.t. the
null-model and, moreover, prominent when certain initial
conditions are met. The emergence of echo chambers is
mostly reinforced by such algorithms when the graph struc-
ture is not already modularized, but homophilic connections
are prevalent; this finding is consistent for all algorithms,
even if with different magnitudes. The overall polarization
shows an increasing trend when the graph is not modular-
ized and tends to a saturation point—with a slightly positive
or sometimes negative effect—when the initial conditions
are of high homophily and segregation. In this regard, we
are able to highlight a significant difference across recom-
menders. We argue that such differences are a result of the
tendency of some recommenders to focus on local neighbor-
hoods rather than the global structure. Finally, we remark
that our framework is able to assess that such findings are in
general statistically significant.

More in general, the goal of this work is to define the set
of assumptions needed for an increase in echo chamber and
polarization to be a direct consequence of recommendation
algorithms. We find that while opinion-biased user behavior
can easily explain such effects (Table 1), in general this as-
sumption is not necessary: the action of recommenders can
cause a surge in echo chambers, as long as some initial con-

ditions are met. Such findings are robust across a wide range
of models, algorithms, and design choices.

Nonetheless, we acknowledge that more complex models
could be tested: for instance, we assume a static network,
where the number of nodes and edges is kept approximately
constant over time. Yet, our experiments with a rewiring rule
that resembles preferential attachment yielded very similar
results. We speculate that these kinds of dynamic networks
could present similar behavior.

Like other simulation-based studies, our work lacks a di-
rect, quantitative comparison with real-world data, which
is obviously difficult to achieve. In fact, it is impossible in
most real cases to observe the counterfactual: for a given
set of users, simultaneously observing their behavior with
and without a recommender system operating. Our goal is
therefore to reproduce phenomena actually observed in real
cases, echo-chamber and polarization. In order to investigate
a causal link between them and recommendation algorithms,
it is important, in fact, to have first a formal model of how
the two are connected, and to delimit a minimal and realistic
set of assumptions for this causal link to exist. This work is
therefore a step in this direction, and as such it opens direc-
tions for future research.

Among all, different model extensions regarding multidi-
mensional opinions could be of interest. From an applica-
tive perspective, our framework could be used as a guide-
line to design and analyze other existing algorithms in order
to assess their interplay with echo chambers. For instance,
one could investigate more complex recommendation algo-
rithms, considering a combination of content-based, graph-
based, and interaction-based methods together with recent
network embeddings techniques. Moreover, it can be used to
evaluate algorithms able to mitigate echo-chamber effects.
We sketched how such an analysis can work, by comparing
the effect of possible intervention strategies.
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